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Crisis-induced intermittency in truncated mean field dynamos

Eurico Covas* and Reza Tavakol†

Astronomy Unit, School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road, London E1 4NS, United K
~Received 1 October 1996!

We investigate the detailed dynamics of a truncatedav dynamo model with a dynamica effect. We find the
presence of multiple attractors, including two chaotic attractors with a fractal basin boundary that merge to
form a single attractor as the control parameter is increased. By considering phase portraits and the scaling of
averaged times of transitions between the two attractors, we demonstrate that this merging is accompanied by
a crisis-induced intermittency. We also find a range of parameter values over which the system has a fractal
parameter dependence for fixed initial conditions. To the authors’ knowledge, this is the first time this type of
intermittency has been observed in a dynamo model and it could be of potential importance in accounting for
some forms of intermittency in the solar and stellar output.@S1063-651X~97!05106-4#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Intermittent-type behavior has been observed in a w
range of experimental and numerical studies of dynam
systems. Theoretical attempts at understanding such m
of behavior fall into two groups:~i! stochastic, involving
models in which intermittency is brought about through t
presence of some form of external noise, and~ii ! determin-
istic, where the mechanism of production of intermittency
purely internal.

Here we concentrate on the latter and in particular on
important subset of such mechanisms referred to as ‘‘cr
intermittency’’ @1,2#, whereby attractors underlying the dy
namics change suddenly as a system parameter is va
There are both experimental and numerical evidence for s
modes of behavior~see, for example,@3,2,4–6# and refer-
ences therein!. As far as their detailed underlying mechanis
and temporal signature are concerned, crises come in t
varieties@2#. Of particular interest for our discussion here
the type of intermittency~which can occur in systems wit
symmetry! referred to as ‘‘attractor merging crisis,
whereby as a system parameter is varied, two or more
otic attractors merge to form a single attractor.

An important potential domain of relevance of dynamic
intermittency is in understanding the mechanism of prod
tion of the so-called grand or Maunder-type minima in so
and stellar activity, during which the amplitude of the stel
cycle is greatly diminished@7#. Many attempts have recentl
been made to account for such a behavior by employ
various classes of models, including truncated models
volving ordinary differential equations~ODEs! ~cf. @8–10#!
as well as axisymmetric mean-field dynamo models mode
on partial differential equations, in both spherical shell@11–
14# and torus@15# topologies. In order to transcend phenom
enological explanations and establish the underlying mec
nism for such behavior~or behaviors, since after all mor
than one intermittency mechanism may occur even in
single model but at different system parameters!, it is of vital
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importance to be able to distinguish between the various
termittency mechanisms and this in turn is greatly assisted
determining the forms of intermittency that can occur f
stellar dynamo models.

Here we consider a truncation of an axisymmetric me
field dynamo model and demonstrate that it can poss
crisis-induced intermittency. To begin with we find that th
system possesses multiple attractors~including two chaotic
ones! with fractal basin boundaries, over a wide range
control parameters. We also find parameter intervals o
which the system has fractal parameter dependence for fi
initial conditions. Such fractal structures can give rise to
form of fragility ~final-state sensitivity!, whereby small
changes in the initial state or the control parameters of
system can result in a different final outcome. We find p
rameter regions where as the control parameter is varied
chaotic attractors merge into one attractor, thus resulting
crisis-induced intermittency. We verify this by investigatin
the phase space of the system and calculating the sca
exponent put forth by Grebogiet al. @2#. As far as we are
aware, this is the first example of such behavior in a dyna
model as well as in a six-dimensional flow.

The structure of the paper is as follows. In Sec. II w
briefly introduce the model. Section III summarizes our
sults demonstrating the presence of crisis in this model.
nally, Sec. IV contains our conclusions.

II. MODEL

The dynamo model considered here is the so-calledav
mean-field dynamo model with a dynamica effect given by
Schmalz and Stix@16# ~see also@17# for details!. We assume
a spherical axisymmetrical configuration with one spatial
mensionx ~measured in terms of the stellar radiusR) for
which the magnetic field takes the form

BW 5S 0,Bf ,
1

R

]Af

]x D , ~2.1!

whereAf is thef component~latitudinal! of the magnetic
6641 © 1997 The American Physical Society
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6642 55EURICO COVAS AND REZA TAVAKOL
vector potential andBf is thef component ofBW . The model
is made up of two ingredients:~i! the mean-field induction
equation

]BW

]t
5¹W 3~vW 3BW 1aBW 2h t¹W 3BW !, ~2.2!

whereBW is the mean magnetic field,vW is the mean velocity,
h t is the turbulent magnetic diffusitivity, anda represents
the a effect, and~ii ! the a effect, which arises from the
correlation of small-scale turbulent velocity and magne
fields@18# and is important in maintaining the dynamo acti
by relating the mean electrical current arising in helical t
bulence to the mean magnetic field. Herea is assumed to be
dynamic and expressible in the forma5a0cosx2aM(t),
wherea0 is a constant andaM is its dynamic part satisfying
the equation

]aM

]t
5n t

]2aM

]x2
1QJW•BW , ~2.3!

whereQ is a physical constant,JW is the electrical current
andn t is the turbulent diffusivity. These assumptions allo
Eq. ~2.2! to be split into the two equations

]Af

]t
5

h t

R2

]2Af

]x2
1aBf , ~2.4!

]Bf

]t
5

h t

R2

]2Bf

]x2
1

v0

R

]Af

]x
. ~2.5!

Expressing these equations in a nondimensional form, r
beling the new variables thus

~Af ,Bf ,aM !⇒~A,B,C!, ~2.6!

and using a spectral expansion of the form

A5 (
n51

N

An~ t !sinnx, ~2.7!

B5 (
n51

N

Bn~ t !sinnx, ~2.8!

C5 (
n51

N

Cn~ t !sinnx, ~2.9!

whereN determines the truncation order, reduces Eqs.~2.3!–
~2.5! into a set of ODEs, the dimension of which depends
the truncation orderN. In @17# the models were taken to b
antisymmetric with respect to the equator and it was fou
that the minimum truncation orderN for which a similar
asymptotic behavior existed wasN54. Here, in view of
computational costs, we take this value ofN for which the
set of truncated equations becomes

]A1

]t
52A11

DB2

2
2
32B2C2

15p
1
64B2C4

105p
1
64B4C2

105p

2
128B4C4

63p
, ~2.10!
c

-

a-

n

d

]B2

]t
524B21

8A1
3p

2
24A3
5p

, ~2.11!

]C2

]t
524nC21

16A1B2
5p

2
32A1B4
7p

1
144A3B2
7p

1
416A3B4
15p

, ~2.12!

]A3

]t
529A31

DB2
2

1
DB4
2

2
32B2C2

21p
2
64B2C4

45p

2
64B4C2

45p
2
128B4C4

165p
, ~2.13!

]B4

]t
5216B41

16A1
15p

1
48A3
7p , ~2.14!

]C4

]t
5216nC41

96A1B2
35p

1
64A1B4

21p
1
32A3B2
3p

1
576A3B4
55p

, ~2.15!

FIG. 1. Phase portraits of the two fixed points and the two sta
cycles.

FIG. 2. Phase portraits of the two coexistent chaotic attracto
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FIG. 3. A 8003800 grid showing a two-
dimensional cut of the basins of attraction wi
D5204 andC25A35B45C450. VariablesA1

andB2 were centered at (0,0) and the size of t
picture is 231. In the legend,1 and2 indicate
the sign of the time average ofA1.
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where D is the control parameter, the so-called dynam
number, andn5n t /h t , which for compatibility with@17,16#
we take to ben50.5.

Clearly the details of the resulting dynamics will depe
on the truncation order chosen. For example, theN52 case
is expressible as the three-dimensional Lorenz system
the higher truncations can have different quantitative ty
of behavior. The important point, as far as our discuss
here is concerned, is that the multiattractor regime discus
here seems to be present as the order of truncation is
creased. In this way such a behavior might be of poten
relevance in understanding some of the intermittent beha
in the output of the Sun and other stars.

III. CRISIS-INDUCED INTERMITTENCY

A coarse study of the system~2.10!–~2.15! and higher
truncations was reported in@17# from a different point of
view. Here we demonstrate the occurrence of crisis-indu
intermittency in this system by considering the detailed
ture of its attractors, their basins, and especially their m
morphoses~merging!, while treatingD as the control param
eter.

To begin with we recall that symmetries are usually as
ciated with this type of attractor merging. The si
dimensional dynamical system considered here possesse
symmetries

An→2An , Bn→2Bn , Cn→Cn . ~3.1!
o

nd
s
n
ed
in-
al
or

d
-
a-

-

the

Now assuming the existence of a crisis for this system
D5Dc , then for crisis-induced intermittency to exist on
requires that forD,Dc there exist two~or more! chaotic
attractors and that asD is increased the attractors enlarge a
atD5Dc they simultaneously touch the boundary separat
their basins. In that case, forD slightly greater thanDc , a
typical orbit will spend long periods of time in each of th
regions where the attractors existed forD,Dc and intermit-
tently switch between them. An important signature for th
mechanism is the way the average timet between these
switches scales with the system parameterD. According to
Grebogiet al. @2#, for a large class of dynamical system
this relation takes the form

t;uD2Dcu2g, ~3.2!

where the real constantg is the critical exponent characte
istic of the system under consideration.

To show that crisis-induced intermittency occurs for t
system~2.10!–~2.15!, we begin by noting that our numerica
results indicate that, for a wide range of parameter valu
the system possesses multiple attractors consisting of fi
points, periodic orbits, and chaotic attractors. Starting aro
D5195, two cycles coexist and both bifurcate in a doubli
bifurcation sequence into two chaotic attractors that coe
afterD.203. AtD'200.4 two other periodic orbits appea
that persist for the parameter values considered here. Fig
1 and 2 show these attractors forD5204, where all six co-
FIG. 4. A 8003160 grid showing the ampli-
fication of the previous picture~close to the lower
left corner! with A1520.804,B2520.700, and
size 0.0130.002.
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6644 55EURICO COVAS AND REZA TAVAKOL
exist and their positions in the six-dimensional phase a
well separated~note that the apparent overlaps in Figs. 1 a
2 are due to projections!.

We also found the corresponding basins of attraction
each attractor that indicate fractal boundaries. This can
seen in Fig. 3, which shows a two-dimensional c
(C25A35B45C450) of the basin boundary for this sys
tem at the parameter valueD5204, and Fig. 4, which shows
the magnification of a region of Fig. 3 where both chaot
attractors possess fractal basins@19#. We also calculated the
box-counting dimension of the boundary between attract
on a horizontal one-dimensional cut of Fig. 4, which turne
out to be noninteger, further substantiating the fractal nat
of the boundaries.

Now asD is increased, the two chaotic attractors mer
and give rise to a single connected attractor. Figure 5 sho
the time series for the variableA1 after the merging and Fig.
6 shows the projection of the merged attractors on the va
ablesA1, B2, andC2. Prior to Dc'204.2796, there is no
switch between the two attractors and the time series d
not show the bimodal behavior seen in Fig. 5.

These results show a clear indication for the occurrence
crisis-induced intermittency in this model. To substantia
this further, we checked that for this system the scaling
lation ~3.2! is satisfied in the neighborhood ofDc

FIG. 5. Chaotic time series for the merged attractors f
D5205.Dc .

FIG. 6. Projection of the resulting merged chaotic attractor
the spaceA1 ,B2 ,C2 for D5207.
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'204.2796. Figure 7 shows the plot of log10utu versus
log10uD2Dcu. To produce the plot, 28 points were taken
regular spacings with the initial conditions chosen in the ch
otic basin of the merged attractor afterD'204.2796 and
2003106 iterations were taken for each point. The trans
tions between the ghosts of the previous attractors were
tected using the averages of the variableA1 over a pseudo-
period of approximatelyDt'1.5 nondimensional time units
As can be seen, the points are well approximated by
straight line, which was obtained using a least-squares
giving g'0.7960.03.

The g coefficient can be calculated also from theoretic
grounds, as shown by Grebogiet al. @2#. The method in-
volves calculating the stable and unstable manifolds of
unstable orbit~thereafterB) mediating the crisis. By exam-
ining the trajectories around the transitions between
ghosts of the previous attractors atD5204.35.Dc , we
found the point where the orbit went inside the portion of th
unstable manifold of theB that has poked over to the othe

r
FIG. 7. Scaling oft as a function of the distance to the critica

dynamo numberDc together with the fitted line.

FIG. 8. Depiction of the final state~attractor! of the system as a
function of changes in the parameterD and the initial condition
B2. This figure represents a horizontal slice of Fig. 4 for many ru
with different dynamo numbers. A resolution of 3003300 pixels
was used and all initial conditions were taken to be zero except
A1520.80 andB2 centered at20.70.
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55 6645CRISIS-INDUCED INTERMITTENCY IN TRUNCATED . . .
side of the stable manifold ofB. The orbit then follows
closely the orientation of the stable and unstable manifo
We then calculated an estimate of the direction of the
stable and stable manifolds. Since this was very sensitive
value ofg had a large error bar, that is, the calculated va
could be anywhere in the range@0.4,1.2#, depending on mi-
nor changes in the choice of the vectors that determine
unstable and stable manifolds. Because the system was
dimensional, all the projections in two-dimensional plan
we used were not very useful to determine with good pre
sion the directions of the two manifolds. Therefore, we w
unable to calculate the critical exponent with sufficient p
cision to compare with the one calculated from the time
tween flips of the orbit.

Finally, we looked at the parameter dependence of
system for fixed initial conditions. We found that there a
intervals ofD for which this is fractal. This can be seen fro
Fig. 8 which depicts the final state~attractor! of the system
~2.10!–~2.15! as a function of changes in the parameterD
and the initial conditionB2.

IV. CONCLUSION

We have found the presence of multiple attractors w
fractal basin boundaries as well as crisis-induced interm
tency in a truncated axisymmetricav dynamo model that is
antisymmetric with respect to the equator. We have seen
this type of intermittency is due to the collision of the tw
chaotic attractors and have confirmed this by calculating
. A
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scaling coefficient suggested by Grebogiet al. @2#. The pres-
ence of crisis-induced intermittency, coupled with the fa
that this type of multiple attractors seem to persist in high
order truncations and the presence of symmetry in dyna
models, may indicate the relevance of this type of interm
tency in more realistic dynamo settings.

We have also found that this system possesses a fra
parameter dependence for fixed initial conditions. The pr
ence of such fractal structures results in a form of fragil
~final-state sensitivity!, whereby small changes in the initia
conditions or the control parameter of the system can re
in qualitative changes in its final dynamics. This type
sensitivity could be of significance in astrophysics in that,
example, it could potentially lead to stars of same spec
type, rotational period, age, and compositions showing
ferent modes of dynamical behavior@20#. Finally, as far as
we are aware, this is the first instance of such behavior
dynamo model as well as in a six-dimensional flow.
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