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Crisis-induced intermittency in truncated mean field dynamos
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We investigate the detailed dynamics of a truncateddynamo model with a dynamie effect. We find the
presence of multiple attractors, including two chaotic attractors with a fractal basin boundary that merge to
form a single attractor as the control parameter is increased. By considering phase portraits and the scaling of
averaged times of transitions between the two attractors, we demonstrate that this merging is accompanied by
a crisis-induced intermittency. We also find a range of parameter values over which the system has a fractal
parameter dependence for fixed initial conditions. To the authors’ knowledge, this is the first time this type of
intermittency has been observed in a dynamo model and it could be of potential importance in accounting for
some forms of intermittency in the solar and stellar outpBL.063-651X97)05106-4

PACS numbd(s): 05.45+b

[. INTRODUCTION importance to be able to distinguish between the various in-
termittency mechanisms and this in turn is greatly assisted by
Intermittent-type behavior has been observed in a wideletermining the forms of intermittency that can occur for
range of experimental and numerical studies of dynamica$tellar dynamo models.
systems. Theoretical attempts at understanding such modes Here we consider a truncation of an axisymmetric mean-
of behavior fall into two groups(i) stochastic, involving field dynamo model and demonstrate that it can possess
models in which ihtermittency is brought about through thecrisis-induced intermittency. To begin with we find that the
presence of some form of external noise, dinfdetermin-  System possesses multiple attractoreluding two chaotic
istic, where the mechanism of production of intermittency isone$ with fractal basin boundaries, over a wide range of
purely internal. control parameters. We also find parameter intervals over
Here we concentrate on the latter and in particular on afvhich the system has fractal parameter dependence for fixed
important subset of such mechanisms referred to as “Crisig\itim conditions. Such fractal structures can give rise to a
intermittency” [1,2], whereby attractors underlying the dy- form of fragility (final-state sensitivity whereby small
namics change suddenly as a system parameter is varieghanges in the initial state or the control parameters of the
There are both experimental and numerical evidence for sucgystem can result in a different final outcome. We find pa-
modes of behaviofsee, for example[3,2,4—§ and refer- rameter regions where as the control parameter is varied, the
ences therein As far as their detailed under|ying mechanism chaotic attractors merge into one attractor, thus resulting in
and temporal signature are concerned, crises come in thrééisis-induced intermittency. We verify this by investigating
varieties[2]. Of particular interest for our discussion here is the phase space of the system and calculating the scaling
the type of intermittencywhich can occur in systems with €xponent put forth by Grebogit al. [2]. As far as we are
Symmetry referred to as ‘“attractor merging crisis,” aware, this is the first example of such behavior in a dynamo
whereby as a system parameter is varied, two or more chanodel as well as in a six-dimensional flow.
otic attractors merge to form a Sing|e attractor. The structure of the paper is as follows. In Sec. Il we
An important potential domain of relevance of dynamical briefly introduce the model. Section Ill summarizes our re-
intermittency is in understanding the mechanism of producsults demonstrating the presence of crisis in this model. Fi-
tion of the so-called grand or Maunder-type minima in solarhally, Sec. IV contains our conclusions.
and stellar activity, during which the amplitude of the stellar
cycle is greatly diminishefi7]. Many attempts have recently
been made to account for such a behavior by employing Il. MODEL
variqus cla_sses o_f mode_ls, incIuding truncated models in- pe dynamo model considered here is the so-cadled
volving ordinary differential equationfODES (cf. [8-10)  mean-field dynamo model with a dynamiceffect given by
as well as axisymmetric mean-field dynamo models modeled ., maiz and Stif16] (see alsd17] for detaily. We assume

on partial differential equations, in both spherical shell- 5 gpherical axisymmetrical configuration with one spatial di-
14] and torug 15] topologies. In order to transcend phenom- nengionx (measured in terms of the stellar radig$ for
enological explanations and establish the underlying mechgynich the magnetic field takes the form

nism for such behaviofor behaviors, since after all more
than one intermittency mechanism may occur even in a

single model but at different system parametedtss of vital . 1 0A,
B={0By, 55—, (2.7
R odx
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vector potential an@ is the ¢ component oB. The model c2)
is made up of two ingredientsi) the mean-field induction
equation

>

] = S - I
EIVX(UXB-#-aB—mVXB), (2.2

whereB is the mean magnetic field, is the mean velocity,
7, is the turbulent magnetic diffusitivity, and represents
the a effect, and(ii) the o effect, which arises from the
correlation of small-scale turbulent velocity and magnetic
fields[18] and is important in maintaining the dynamo action

by relating the mean electrical current arising in helical tur- 2 B2}
bulence to the mean magnetic field. Herés assumed to be
dynamic and expressible in the form= aycox—ay(t), FIG. 1. Phase portraits of the two fixed points and the two stable

whereq, is a constant aney, is its dynamic part satisfying cycles.
the equation

JB 8A; 24A
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whereQ is a physical constant] is the electrical current, aC, 16AB, 32AB, 144AB,
and v, is the turbulent diffusivity. These assumptions allow e —4Cyt 5 75 7a
Eq. (2.2) to be split into the two equations
416A3B
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Expressing these equations in a nondimensional form, rela- 64B,C, 128,C,
beling the new variables thus T 457 1657 ° (2.13
(A¢,B¢,QM)2(A,B,C), (26)
and using a spectral expansion of the form 9Ba _ 16B +—16A1+—48A3
gasp P A AT 2.14
N
A= Ap(t)sinnx, 2.
nzl nlt) @1 ICq 16 +96Ale+64AlB4+32A382
N ot 4" 357 21 3
B= >, By(t)sinnx, (2.8 576A:B,
n=1 + , (2.19
557
N
C= 2, C,(t)simx, (2.9
n=1

whereN determines the truncation order, reduces Eg8)—
(2.5 into a set of ODEs, the dimension of which depends on 60
the truncation ordeN. In [17] the models were taken to be 4
antisymmetric with respect to the equator and it was found
that the minimum truncation orded for which a similar
asymptotic behavior existed wdd=4. Here, in view of
computational costs, we take this valueMffor which the

set of truncated equations becomes

-20
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631 (210 FIG. 2. Phase portraits of the two coexistent chaotic attractors.
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FIG. 3. A 800x800 grid showing a two-
dimensional cut of the basins of attraction with
D=204 andC,=A;=B,=C,=0. VariablesA;
andB, were centered at (0,0) and the size of the
picture is 2<1. In the legend# and — indicate
the sign of the time average ;.

Variable B[2]

Variable A[1]

where D is the control parameter, the so-called dynamo Now assuming the existence of a crisis for this system at
number, and’= v,/ 5,, which for compatibility with[17,16f = D=D,, then for crisis-induced intermittency to exist one
we take to bev=0.5. requires that forD<D, there exist two(or more chaotic
Clearly the details of the resulting dynamics will dependattractors and that d3 is increased the attractors enlarge and
on the truncation order chosen. For example,Nve2 case atD=D. they simultaneously touch the boundary separating
is expressible as the three-dimensional Lorenz system artleir basins. In that case, f@ slightly greater tharD., a
the higher truncations can have different quantitative typesypical orbit will spend long periods of time in each of the
of behavior. The important point, as far as our discussiorregions where the attractors existed B D, and intermit-
here is concerned, is that the multiattractor regime discusse@ntly switch between them. An important signature for this
here seems to be present as the order of truncation is imnechanism is the way the average timebetween these
creased. In this way such a behavior might be of potentiagwitches scales with the system param@erAccording to
relevance in understanding some of the intermittent behavioGrebogiet al. [2], for a large class of dynamical systems,
in the output of the Sun and other stars. this relation takes the form

[ll. CRISIS-INDUCED INTERMITTENCY 7~|D—D.| 77, (3.2

A coarse study of the systei2.10—(2.15 and higher
truncations was reported ifl7] from a different point of ) »
view. Here we demonstrate the occurrence of crisis-inducedhere the real constant is the critical exponent character-
intermittency in this system by considering the detailed nalStic of the system under consideration.
ture of its attractors, their basins, and especially their meta- 10 Show that crisis-induced intermittency occurs for the
morphosegmerging, while treatingD as the control param- SYStem(2.10—(2.15, we begin by noting that our numerical
eter. results indicate that, for a wide range of parameter values,
To begin with we recall that symmetries are usually assolh"j system possesses multiple gttractors consisti.ng of fixed
ciated with this type of attractor merging. The six- points, periodic orbits, an_d chaotic attractors. Sfcartlng aro_und
dimensional dynamical system considered here possesses g 199, two cycles coexist and both bifurcate in a doubling
symmetries bifurcation sequence into two chaotic attractors that coexist
after D>203. At D~200.4 two other periodic orbits appear
that persist for the parameter values considered here. Figures
A,——A,, B,——-B,, C,—C,. (3.) 1 and 2 show these attractors or=204, where all six co-

P Chaotic + FIG. 4. A 800x 160 grid showing the ampli-
. fication of the previous pictur&lose to the lower
left corne) with A;=—0.804,B,=—0.700, and
size 0.0 0.002.
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FIG. 5. Chaotic time series for the merged attractors for . . ) .
D=205>D,. FIG. 7. Scaling ofr as a function of the distance to the critical

dynamo numbebD . together with the fitted line.

exist and their positions in the six-dimensional phase are _

well separatednote that the apparent overlaps in Figs. 1 and~204.2796. Figure 7 shows the plot of lgg| versus

2 are due to projections log;o D—D¢|. To produce the plot, 28 points were taken at
We also found the corresponding basins of attraction fofégular spacings with the initial conditions chosen in the cha-

each attractor that indicate fractal boundaries. This can betic basin of the merged attractor aftBr~204.2796 and
seen in Fig. 3, which shows a two-dimensional cut200X 10° iterations were taken for each point. The transi-

(C,=A;=B,=C,=0) of the basin boundary for this sys- tions between the ghosts of the previous attractors were de-

tem at the parameter valiliz= 204, and Fig. 4, which shows tected using the averages of the variaBleover a pseudo-
the magnification of a region of Fig. 3 where both chaoticperiod of approximateljt~ 1.5 nondimensional time units.
attractors possess fractal basj§]. We also calculated the As can be seen, the points are well approximated by a
box-counting dimension of the boundary between attractorstraight line, which was obtained using a least-squares fit
on a horizontal one-dimensional cut of Fig. 4, which turnedgiving y~0.79+0.03.

out to be noninteger, further substantiating the fractal nature The y coefficient can be calculated also from theoretical
of the boundaries. grounds, as shown by Grebogt al. [2]. The method in-

Now asD is increased, the two chaotic attractors mergevolves calculating the stable and unstable manifolds of the
and give rise to a single connected attractor. Figure 5 showgnstable orbitthereafterB) mediating the crisis. By exam-
the time series for the variabke, after the merging and Fig. ining the trajectories around the transitions between the
6 shows the projection of the merged attractors on the varighosts of the previous attractors Bt=204.35>D., we
ablesA;, B,, and C,. Prior to D,~204.2796, there is no found the point where the orbit went inside the portion of the
switch between the two attractors and the time series dod#stable manifold of th& that has poked over to the other
not show the bimodal behavior seen in Fig. 5.

These results show a clear indication for the occurrence ¢
crisis-induced intermittency in this model. To substantiate
this further, we checked that for this system the scaling re
lation (3.2) is satisfied in the neighborhood oD,
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FIG. 8. Depiction of the final stat@ttractoy of the system as a
function of changes in the parameter and the initial condition
B,. This figure represents a horizontal slice of Fig. 4 for many runs
with different dynamo numbers. A resolution of 30800 pixels
FIG. 6. Projection of the resulting merged chaotic attractor inwas used and all initial conditions were taken to be zero except for
the space;,,B,,C, for D=207. A;=-0.80 andB, centered at-0.70.
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side of the stable manifold oB. The orbit then follows scaling coefficient suggested by Grebegal.[2]. The pres-
closely the orientation of the stable and unstable manifoldsence of crisis-induced intermittency, coupled with the facts
We then calculated an estimate of the direction of the unthat this type of multiple attractors seem to persist in higher-
stable and stable manifolds. Since this was very sensitive, therder truncations and the presence of symmetry in dynamo
value ofy had a large error bar, that is, the calculated valuemodels, may indicate the relevance of this type of intermit-
could be anywhere in the ran§6.4,1.3, depending on mi- tency in more realistic dynamo settings.
nor changes in the choice of the vectors that determine the We have also found that this system possesses a fractal
unstable and stable manifolds. Because the system was higiarameter dependence for fixed initial conditions. The pres-
dimensional, all the projections in two-dimensional planesence of such fractal structures results in a form of fragility
we used were not very useful to determine with good preci{final-state sensitivity whereby small changes in the initial
sion the directions of the two manifolds. Therefore, we wereconditions or the control parameter of the system can result
unable to calculate the critical exponent with sufficient pre-in qualitative changes in its final dynamics. This type of
cision to compare with the one calculated from the time besensitivity could be of significance in astrophysics in that, for
tween flips of the orbit. example, it could potentially lead to stars of same spectral
Finally, we looked at the parameter dependence of théype, rotational period, age, and compositions showing dif-
system for fixed initial conditions. We found that there areferent modes of dynamical behavi@0]. Finally, as far as
intervals ofD for which this is fractal. This can be seen from we are aware, this is the first instance of such behavior in a
Fig. 8 which depicts the final statattractoy of the system dynamo model as well as in a six-dimensional flow.
(2.10—-(2.19 as a function of changes in the paramdier
and the initial conditiorB,.
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